www.rsc.org/chemcomm

ChemComm

Sergey Kurbatov, Pedro Rodriguez-Dafonte, Régis Goumont and François Terrier*

Laboratoire SIRCOB, UMR 8086, Institut Lavoisier-Franklin, University of Versailles, 45, Avenue des Etats-Unis, 78035 Versailles Cedex, France. E-mail: terrier@chimie.uvsq.fr

Received (in Cambridge, UK) 19th June 2003, Accepted 1st July 2003 First published as an Advance Article on the web 15th July 2003

Superelectrophilic halonitro-2,1,3-benzoxadiazoles undergo remarkably facile carbon–carbon couplings with some electron-rich aromatics and heteroaromatics, affording quantitatively products exhibiting an intense visible absorption due to strong intramolecular charge transfer.

Countless examples have been reported where a S_NAr pathway plays a pivotal role in the displacement of a potential leaving group of an electron-deficient aromatic or heteroaromatic substrate by anionic as well as neutral oxygen, sulfur and nitrogen nucleophiles.1 A number of books and reviews have discussed the synthetic applicability of this mechanism, both in inter- and intra- molecular nucleophilic aromatic substitutions.^{1a,d,2} Even though a few S_NAr carbon-carbon couplings have been reported, the evidence is that this mechanism does not apply satisfactorily well with most carbon nucleophiles.^{1a} A major factor responsible for this situation is the notable tendency of many carbanions to oxidise, thereby favoring the occurrence of electron-transfer processes. As a result, other strategies have been developed, such as the vicarious and oxidative nucleophilic aromatic substitutions, which allow C-C bond formation at an initially unsubstituted position of an electron-deficient arene or hetarene ring.3-5

$$R_{1} \xrightarrow{R_{2}} R_{4} \xrightarrow{R_{4}} NO_{2} \xrightarrow{\text{EtOH-CHCl}_{3}} R_{1} \xrightarrow{R_{2}} NO_{2} + XH$$

$$R_{3} \xrightarrow{R_{5}} NO_{2} \xrightarrow{\text{EtOH-CHCl}_{3}} R_{1} \xrightarrow{R_{5}} NO_{2} + XH$$

Among the few known S_NAr substitutions involving neutral carbon nucleophiles, the reactions depicted in eqn. 1 are noteworthy since they describe a convenient synthesis of donor–acceptor substituted biphenyls *via* substitution of nitroactivated haloarenes, *e.g.* picryl chloride, by electron-rich aminobenzenes.^{6a} In these instances, it is the high carbon nucleophilicity of these substrates – the pK_a^{CH} value for *C*-protonation of the benzene ring in aqueous solution is 9.62 for 1,3,5-tripyrrolidinobenzene^{6b} – that provides the decisive driving force for the substitutions.

In this paper, we report on our finding that the high electrophilic character of 7-chloro-4,6-dinitro-benzofurazan (DNBZ-Cl) and -benzofuroxan (DNBF-Cl) allows the achievement of remarkably facile S_NAr -type displacements of the chlorine atom by very weak carbon nucleophiles. The reactions of DNBZ-Cl and DNBF-Cl with *N*-methylindole 1 ($pK_a^{CH} = -2.32$),^{7a} azulene 2 ($pK_a^{CH} = -1.76$)^{7b} and 1,2,5-trimethylpyrrole 3 ($pK_a^{CH} = -0.49$)^{7c} have thus been found to proceed smoothly at room temperature in ethanol, affording the expected substitution products S-1a,b, S-2a,b and S-3a,b in excellent yields.† Interestingly, these compounds can also be viewed as being formally the products of S_EAr substitution of the azulene or hetarene moiety of the nucleophiles by the electrophilic DNBZ-Cl and DNBF-Cl substrates.

A most reasonable mechanism for the substitutions is the S_NAr - S_EAr coupling pathway described in Scheme 1 with

reference to the *N*-methylindole systems. In this scheme, it is assumed that the initial formation of the zwitterionic Wheland– Meisenheimer intermediates ZH[±] is followed by rearomatization of the arenonium or hetarenium moiety to give the anionic σ -complexes Z⁻, a situation which was shown to prevail in the S_EAr substitutions of a number of indoles or pyrroles by 4,6-dinitrobenzofuroxan (DNBF) to give stable σ -adducts of type 4 in various solvents. Facile loss of chloride ion (p $K_a =$ -7) from the adducts Z⁻ will then afford the substitution products.⁸

$$k_{\rm obs} = \frac{k_1 k_2}{k_{-1} + k_2} [\rm Nu] = k [\rm Nu]$$
(2)

A kinetic study of the reactions has been carried out at 25 °C under pseudo-first-order conditions with respect to the nucleophilic reagent (Nu = 1, 2 or 3) as the excess component in acetonitrile solution. The general expression for the observed rate constant for formation of the products, k_{obs} , as derived from Scheme 1 under the assumption that the zwitterions ZH[±] are low-concentration intermediates, is given by eqn. 2. In accordance with this equation, excellent straight lines with zero intercepts were obtained in all systems on plotting k_{obs} vs the Nu concentration. From the slopes of these plots, the second-order rate constants k listed in Table 1 were readily derived. Very importantly, experiments carried out with deuterated nucleophiles, e.g. 3-D-N-methylindole, did not reveal any significant influence of the nature of the isotopic substitution on the rates of the reactions, e.g. $k^{\rm H}/k^{\rm D} = 1.1 \pm 0.1$ for the N-methylindole reactions. This shows that proton removal from ZH[±] is rapid and

Scheme 1

10.1039/b30701

ЫÖ

Table 1 Second-order rate constants, k_1 , for nucleophilic addition of *N*-methylindole 1, azulene 2 and 1,2,5-trimethylpyrrole 3 to DNBZ-Cl, DNBF-Cl and DNBF in acetonitrile. $T = 25 \text{ }^{\circ}\text{C}$

Nu	$k = k_1, \text{mol}^{-1} \mathrm{dm}^3 \mathrm{s}^{-1}$				
	pK ^{Nu} _a	DNBZ-Cl	DNBF-Cl	DNBF	_
1	-2.32	1.15	1.02	19.6	
2 3	-1.76 -0.49	0.56 3.45	0.50 9.64	5.88 910	

that nucleophile addition is the actual rate-limiting step of the substitutions in acetonitrile solution, *i.e.* $k = k_1$.

Consistent with this conclusion, the rate constants k_1 for addition of 1–3 to the chlorine-bearing C-7 carbon of DNBF-Cl are notably lower than those for addition of these nucleophiles to the unsubstituted *C*-7 carbon of DNBF (Table 1).⁹ Other structural things being equal, it is a general situation that nucleophilic addition occurs faster at an unsubstituted than a substituted carbon in nucleophilic aromatic substitutions and related σ -complexation processes.¹ More data are needed, however, to delineate the reasons why the present k_1 values for DNBF-Cl and DNBZ-Cl reactions do not parallel the *C*-basicity of the three nucleophiles.

A most important result is that the various products obtained through Scheme 1 exhibit an intense and solvent dependent visible absorption at rather high wavelengths, e.g. $\lambda_{max} = 664$ nm (H₂O), $\lambda_{max} = 624$ nm (Me₂SO) and $\lambda_{max} = 609$ nm (heptane) for S-2b. Obviously, a strong intramolecular charge transfer is taking place between the π -system of the aromatic or heteroaromatic donor and the π -system of the benzofurazan or benzofuroxan acceptor, even though the coplanarity of these two moieties is totally precluded by steric effects. Some NMR data provide a suitable illustration of this charge transfer, e.g. the $\hat{H_2}$ resonance of the indole ring moves strongly to higher frequency on going from the parent substrate 1 (δ = 7.09 ppm) to S-1a ($\delta = 8.30$) or S-1b ($\delta = 7.78$) in CDCl₃. In view of these preliminary results, further experimental and theoretical work is currently being carried out to get a better picture of how the extent of the charge transfer is in this series modulated by steric and electronic effects and therefore by the structure and the π excessive character of the donor system.

Notes and references

[†] General procedure: To a solution of **1**, **2** or **3** (0.2 g,) in EtOH (20 ml) at room temperature was added one equivalent of DNBZ-Cl or DNBF-Cl.¹⁰ The solution turned rapidly green and the reaction mixture was stirred at room temperature for one hour. The precipitate was collected by filtration and then purified by column chromatography (SiO₂–CH₂Cl₂).

S-1a. Dark green solid; yield 86%; mp 248 °C dec.; EI MS: m/z 339 [M]^{+,} anal. calc. for C₁₅H₉N₅O₅: C, 53.10; H, 2.67; N, 20.64. Found: C, 52.98; H, 2.59; N, 20.82%. ¹H NMR (CDCl₃, δ): 9.06 (1H, H_{5'}, s), 8.30 (1H, H₂, s), 7.51 (1H, H₇, d, ³J_{7/6} 8.1 Hz), 7.43 (1H, H₅, ddd, ³J_{5/4} 8.1 Hz, ³J_{5/6}

8.1, ${}^{4}\!J_{5/7}$ 1.1 Hz), 7.34 (1H, H₆, ddd, ${}^{3}\!J_{6/5}$ 8.1, ${}^{3}\!J_{6/7}$ 8.1, ${}^{4}\!J_{6/4}$ 1.1 Hz), 7.19 (1H, H₄, d, ${}^{3}\!J_{4/5}$ 8.1 Hz), 4.04 (3H, CH₃, s).

S-2a. Dark blue solid; yield 72%; mp 197 °C dec.; EI MS: m/z 336 [M]⁺⁺, anal. calc. for C₁₆H₈N₄O₅: C, 57.15; H, 2.40; N, 16.66. Found: C, 57.38; H, 2.36; N, 16.38%. ¹H NMR (CDCl₃, δ): 9.07 (1H, H₅, s), 8.58 (1H, H₄, d, ³J_{4/5} 9.6 Hz), 8.37 (1H, H₂, d, ³J_{2/1} 4.4 Hz), 8.22 (1H, H₈, d, ³J_{8/7} 9.8 Hz), 7.91 (1H, H₆, dd, ³J_{6/5} 9.9, ³J_{6/7} 9.9 Hz), 7.63 (1H, H₁, d, ³J_{1/2} 4.4 Hz), 7.62 (1H, H₅, dd, ³J_{5/6} 9.9, ³J_{5/4} 9.6 Hz), 7.53 (1H, H₇, dd, ³J_{7/6} 9.9, ³J_{7/8} 9.8 Hz).

S-3a. Dark green solid; yield 87%; mp 187 °C dec.; EI MS: m/z 317 [M]⁺⁺, anal. calc. for C₁₃H₁₁N₅O₅: C, 49.22; H, 3.49; N, 22.07. Found: C, 49.18; H, 3.57; N, 22.21%. ¹H NMR (CDCl₃, δ): 8.93 (1H, H₅, s), 6.40 (1H, H₄, q, $^{4}J_{4/CH_{3}}$ 0.8 Hz), 3.52 (3H, CH₃¹, s), 2.31 (3H, CH₃⁵, d, $^{4}J_{CH_{3/4}}$ 0.8 Hz), 2.19 (3H, CH₃², s).

S-1b. Dark green solid; yield 74%; mp 179 °C dec.; EI MS: m/z 355 [M]⁺⁺, 339 [M - O]⁺⁺, anal. calc. for C₁₅H₉N₅O₆: C, 50.71; H, 2.55; N, 19.71. Found: C, 50.80; H, 2.48; N, 19.57%. ¹H NMR (CDCl₃, δ): 8.89 (1H, H₅, s), 7.78 (1H, H₂, s), 7.48 (1H, H₇, d, $^{3}J_{7/6}$ 7.4 Hz), 7.40 (1H, H₅, ddd, $^{3}J_{5/4}$ 8.1 Hz, $^{3}J_{5/6}$ 8.1, $^{4}J_{5/7}$ 1.1 Hz), 7.29 (1H, H₆, ddd, $^{3}J_{6/5}$ 8.1, $^{3}J_{6/7}$ 7.4, $^{4}J_{6/4}$ 1.1 Hz), 7.15 (1H, H₄, d, $^{3}J_{4/5}$ 8.1 Hz), 3.98 (3H, CH₃, s).

S-2b. Dark blue solid; yield 80%; mp 204 °C dec.; EI MS: m/z 352 [M]⁺⁺, 336 [M–O]⁺⁺, anal. calc. for C₁₆H₈N₄O₆: C, 54.56; H, 2.29; N, 15.90. Found: C, 54.87; H, 2.28; N, 15.62%. ¹H NMR (CDCl₃, δ): 8.89 (1H, H_{5'}, s), 8.54 (1H, H₄, d, ³J_{4/5} 9.5 Hz), 8.00 (1H, H₈, d, ³J_{8/7} 9.9 Hz), 7.96 (1H, H₂, d, ³J_{2/1} 4.4 Hz), 7.88 (1H, H₆, dd, ³J_{6/5} 9.6, ³J_{6/7} 9.6 Hz), 7.58 (1H, H₅, dd, ³J_{5/6} 9.6, ³J_{5/4} 9.5 Hz), 7.56 (1H, H₁, d, ³J_{1/2} 4.4 Hz), 7.48 (1H, H₇, dd, ³J_{7/6} 9.6, ³J_{7/8} 9.9 Hz).

S-3b. Dark green solid; yield 92%; mp 172 °C dec.; EI MS: m/z 333 [M]⁺⁺, anal. calc. for C₁₃H₁₁N₅O₆: C, 46.85; H, 3.33; N, 21.01. Found: C, 47.05; H, 3.36; N, 20.99%. ¹H NMR (CDCl₃, δ): 8.70 (1H, H_{5'}, s), 5.86 (1H, H₄, q, $^{4}J_{4/CH_3}$ 1.7 Hz), 3.48 (3H, CH₃¹, s), 2.25 (3H, CH₃⁵, d, ⁴J _{CH3/4} 1.7 Hz), 2.12 (3H, CH₃², s).

- (a) F. Terrier, in Nucleophilic Aromatic Displacement; ed H. Feuer, VCH, New York, 1991; (b) J. Miller, in Aromatic Nucleophilic Substitution, Elsevier, Amsterdam, 1968; (c) J. F. Bunnett, Rev. Chem. Soc., 1958, 12, 1; (d) E. Buncel, M. R. Crampton, M. J. Strauss and F. Terrier, in Electron-Deficient Aromatic and Heteroaromatic – Base Interactions, Elsevier, Amsterdam, 1984.
- 2 C. Paradisi, in *Comprehensive Organic Synthesis*, vol. 4, part 2, ed. B. M. Trost, Pergamon Press, Oxford, 1991.
- 3 (a) M. Makosza and K. Stalinski, Chem. Eur. J., 1997, 3, 3025; (b) M. Makosza and K. Wojciechowski, Liebigs Ann. Chem., 1997, 1905.
- 4 A. R. Katritzky and K. S. Laurenzo, J. Org. Chem., 1988, 53, 3978.
- 5 G. Moutiers, R. Goumont, J. Pinson and F. Terrier, *Chem. Eur. J.*, 2001, **7**, 1712.
- 6 (a) F. Effenberger, Acc. Chem. Res., 1989, 22, 27; (b) S. Vogel, W. Knoche and W. W. Schoeller, J. Chem. Soc., Perkin Trans. 2, 1986, 769.
- 7 (a) R. L. Hinman and J. J. Lang, J. Am. Chem. Soc., 1964, 86, 3796; (b)
 J. Schulze and F. A. Long, J. Am. Chem. Soc., 1964, 86, 4770; (c) E. B.
 Whipple, Y. Chiang and R. Hinman, J. Am. Chem. Soc., 1963, 85, 26.
- 8 A situation where loss of chloride would occur in a concerted process with proton loss cannot be firmly rejected.
- 9 (a) F. Terrier, E. Kizilian, J. C. Hallé and E. Buncel, J. Am. Chem. Soc., 1992, **114**, 1740; (b) F. Terrier, M. J. Pouet, J. C. Halle, S. Hunt, J. R. Jones and E. Buncel, J. Chem. Soc., Perkin Trans. 2, 1993, 1665.
- 10 (a) G. P. Sharnin, F. S. Levinson, S. A. Akimova and R. H. Hasanov, USSR Pat. 657025, 1979 (*Chem. Abstr.*, 1979, **91**, P20519h); (b) W. P. Norris, A. Chafin, R. J. Spear and R. W. Read, *Heterocycles*, 1984, **22**, 271.